NYAM hosts Vesalius 500: Art and Anatomy

WebThis October, the New York Academy of Medicine will host Art, Anatomy, and the Body: Vesalius 500, Guest curated by artist and anatomist Riva Lehrer

On October 18, the NYAM’s second-annual Festival for Medical History and the Arts, “Art, Anatomy, and the Body: Vesalius 500″ will celebrate the 500th birthday of anatomist Andreas Vesalius. Our own Brandy Schillace, research associate and guest curator for the Dittrick, will be one of the hosted speakers! Click here for the full schedule–and see below for a short description.

Vesalius’ groundbreaking De humani corporis fabrica (The Fabric of the Human Body) of 1543 is a key Renaissance text, one that profoundly changed medical training, anatomical knowledge, and artistic representations of the body, an influence that has persisted over the centuries. The Festival is one of a global series of celebrations of his legacy, and a day-long event will explore the intersection of anatomy and the arts with a vibrant roster of performers and presenters, including Heidi Latsky’s “GIMP” Dance Project; the comics artists of Graphic Medicine; Sander Gilman on posture controlling the unruly body; Alice Dreger on inventing the medical photograph; Bill Hayes on researching hidden histories of medicine; Steven Assael, Ann Fox and Chun-shan (Sandie) Yi on anatomy in contemporary art; Chase Joynt’s Resisterectomy, a meditation on surgery and gender; Brandy Schillace on ambivalent depictions of female anatomy in the 18th century; Lisa Rosner on famous body snatchers Burke and Hare; the art of anatomical atlases with Michael Sappol; medical 3D printing demos by ProofX; anatomical painting directly on skin with Kriota Willberg; Daniel Garrison on translating Vesalius for modern audiences; Jeff Levine and Michael Nevins on revisiting The Fabrica Frontispiece; and many more!

To join this excellent event, register here or visit the NYAM blog!

Flipping through Anatomical Fugitive Sheets

Anatomical Fugitive Sheet of Female Figure, c. 1560Bodies move and have layers. Yes, this is hopefully an obvious statement. But imagine you lived in the 16th century and were attempting to demonstrate this point. In print.

When illustrations served as a primary means of study for students of anatomy and medicine, could a piece of paper adequately represent the complexity of the human body?

How about multiple pieces of paper?

Anatomical “fugitive” sheets, so named because of their unfortunate tendency of being torn or misplaced over time, allowed readers to visualize the layers of organs lying beneath an illustrated subject’s flesh [1]. Any observer could see the interior of the body through stages of dissection without the limitations set by a decaying corpse.

The earliest uses of moveable, superimposed flaps are from 1538 by Heinrich Vogtherr in Strasbourg, Germany [2]. Vogtherr created multiple delicate layers of pressed linen to show the positions of organs in both male and female subjects. Although few examples remain, conservators at the Harvard University Library are working to preserve these rare anatomical texts.

In his 1543 de Human corporis fabrica libri septum, Vesalius also provided readers the option of creating their own anatomical flaps by including instructions as to how to cut out and attach additional illustrations onto other plates. Although the idea of cutting and pasting into a first edition Vesalius text might strike terror into the hearts of medical historians today, it seems such alterations were the author’s original intention [3].

The use of such flaps extends throughout the 19th century, including G. Spratt’s 1848 edition of Obstetric Tables: Comprising Graphic Illustrations with Descriptions and Practical Remarks; Exhibiting on Dissected Plates Many Important Subjects in Midwifery [4]. Despite the verbosity of the title, this work teaches through illustration rather than words. Included among the “dissected plates,” is a blushing female with downturned eyes, lifting her skirt to expose her naked body to the reader. As one thumbs through the fugitive pages, the woman’s belly swells, her breasts change in shape, and the outlined womb also tilts and grows. When one reaches the final flap, a child, in utero, is exposed. Thus, Spratt is able to demonstrate with anatomical fugitive sheets not only the anatomy of a body, but the way it changes over time.


Newer technologies from plastic transparent sheets to computer animation have made anatomical fugitive pages a thing of the past. However, these simple paper flaps remain an example of the early ingenuity and workmanship that used humble materials to explain the wonders of anatomy.

Continue reading Flipping through Anatomical Fugitive Sheets

Understanding The Motion of the Heart: From Knowledge to Practice

Guest Post by Catherine Osborn, BA/BS
Graduate Student, Department of Anthropology, Case Western Reserve University

Matters of the heart are often confusing. Early scientists wondered if “the motion of the heart was only to be comprehended by God” [1]. The heart and blood were the subjects of much medical debate in the 17th century when an English physician questioned classic anatomical texts. Although previous anatomists like Vesalius had questioned traditional views, William Harvey was the first to accurately describe the circulation of blood throughout the body. Once scientists understood the regular functions of the cardiovascular system, medical pioneers explored how to manipulate the flow of blood. These later discoveries saved patients from deaths caused by conditions from surgical shock to heart disease.

Galen and Vesalius: Early Circulatory Notions

Until William Harvey’s findings were published in 1628, Galen’s work from centuries before remained the central physiological understanding of the motions of the heart and blood [1,2]. Galen taught that venous and arterial blood flowed as two different systems [3,4]. The liver was thought to produce the venous blood. In a separate system, the heart produced arterial blood and ‘spirits’ that provided heat and life to the rest of the body. According to Galen, the lungs were mainly responsible for cooling this vital blood.

Vesalius illustration from 1543 showing a two-chambered heart.

Much of Galen’s experimentation was on non-human animals, and thus his descriptions were understandably flawed [4]. For example, he described the heart as a two chambered organ divided by a septum containing invisible pores. These pores supposedly allowed blood to pass from the right to left chambers.

Despite the errors in this model, later anatomists who performed human dissections supported Galen’s description of the human heart. For example, Vesalius supported this position in the first edition of De Humani Corporus Fabrica (On the Fabric of the Human Body) in 1543, but later revised his position in the 1555 edition. In breaking with Galen’s teachings, Vesalius rejected the invisible pores without explaining how else blood could move from the right to left in the heart [3,4].

William Harvey and the “Circular Motion of the Blood”

Dr. William Harvey (1578-1657)
Dr. William Harvey (1578-1657)

Dr. William Harvey first voiced his views as a lecturing at London’s College of Physicians in 1616 [2]. Two years later, he was appointed “Physician Extraordinary” to King James I. Because the potential controvery, On the Motion of the Heart and Blood in Animals (Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus) was first published in Latin at a small printer in Frankfurt in 1628.

This work clearly detailed how blood moved from the right side of the heart, through the lungs, and then to the left chambers. He further showed that blood flowed through the arteries to the veins and back to the heart – confuting the notion of two different circulatory systems.

Harvey’s treatise included mention of how knowledge of the circulatory system could be used by physicians and surgeons when applying ligatures for amputations and bloodletting. He even suggested that the circulation of the blood could explain how medicines applied to the skin enter into the blood stream!

Figure from On the Motion of the Heart and Blood in Animals showing Harvey’s experiments with blood flow in the veins and arteries.
Figure from On the Motion of the Heart and Blood in Animals showing Harvey’s experiments with blood flow in the veins and arteries.

Despite Harvey’s clarity and prominent medical career, his research was not immediately recognized in England, and his book was only published in English twenty-five years after the first edition [2]. The 1628 and 1653 editions of On the Motion of the Heart and Blood in Animals can be found among the rare books of the Dittrick Medical History Center.

Marvels, Mavericks, and Medicine: Cardiovascular Cleveland

Harvey’s accurate account of the flow of blood allowed later physicians to therapeutically alter the circulatory system. In an upcoming talk, Dr. Brandy Schillace, Research Associate and Guest Editor of the Dittrick Museum, will discuss some of medicine’s greatest breakthroughs that occurred in Cleveland, Ohio, where pioneering physicians made history using their understandings of the motions of the heart and blood.

Crile’s canula was used to hold the veins of the donor and patient together to allow for blood flow.
Crile’s canula was used to hold the veins of the donor and patient together to allow for blood flow.

George W. Crile, Sr., a founding member of the Cleveland Clinic Foundation, is notable for pioneering techniques in blood transfusion. Crile was interested in preventing shock from major blood loss during surgery [5]. On August 6, 1906, Crile saved a young man during surgery by using the patient’s brother as a blood donor [6]. Working with silk thread and a sewing needle, Crile sutured a vein in the wrist of each man together. Upon receiving the donor blood, the patient miraculously improved in color and gained consciousness. After making improving the method, Crile used blood transfusions during WWI to triage wounded soldiers [5].

Coronary Bypass Surgery
Coronary Bypass Surgery

In 1967, Dr. René Favaloro, a young Argetine cardiovascular surgeon at the Cleveland Clinic became known as a pioneer of coronary bypass surgery in the treatment of heart disease [7]. This technique was used to regain blood flow to heart tissues after a blockage caused by heart attacks. Favaloro and his team performed many variations of bypass surgery using a section of a vein from the patient’s leg to avoid the blocked portion of a coronary artery [8]. From their research, these mavericks of medicine concluded  that their surgery, if preformed immediately after a heart attack, could save most of the heart issue [7].

From William Harvey’s descriptions of the circulatory system to later discoveries, the heart and blood remain central foci of medical study and exploration. These innovations have been used to save countless lives, such that the question now is not if “the motion of the heart was only to be comprehended by God,” but instead what more can be done by harnessing this knowledge?

Upcoming Event

For more on Marvels, Mavericks, and Medicine, Dr. Brandy Schillace will be speaking at Belt Magazine’s Happy Dog University on Tuesday, June 10th at 7:30 pm.



[1] Harvey, William. 1628. “On the Motions of the Hearth and Blood” p. 3-75. In The Works of William Harvey, M.D. 1847 Edition. Robert Willis, trans. London.

[2] Willis, Robert. 1847. “A Life of the Author” p. xv-xxxiv. In The Works of William Harvey, M.D. London.

[3] Payne, Joseph Frank. 1896. “The Problem of Circulation” p. 35-36. In Harvey and Galen. London: Oxford University Press Warehouse.

[4] Pagel, Walter. 1967. William Harvey’s Biological Ideas: Selected Aspects and Historical Background. Switzerland: Basler Druck-und Verlagsanstalt.

[5] Loop, Floyd D. 1993. Dr. George W. Crile: The father of physiologic surgery. Cleveland Clinic Journal of Medicine. 60(1): 75-80.

[6] Nathoo, Narendra. Frederick K. Lautzenheiser, Gene H. Barnett. 2009. The first direct human blood transfusion: The forogotten legacy of George W. Crile. Neurosurgery. 64(3): 20-26.

[7] Fuster, Valentin and James T. Willerson. 2001. In memorian: René G. Favaloro, MD: The passing of a pioneer. Circulation. 103: 480-481.

[8] Captur, Gabriella. 2004. Memento for René Favaloro. Texas Heart Institute Journal. 31(1): 47-60.